Abstract
The scale invariant feature transform (SIFT), which was proposed by David Lowe, is a powerful method that extracts and describes local features called keypoints from images. These keypoints are invariant to scale, translation, and rotation, and partially invariant to image illumination variation. Despite their robustness against these variations, strong lighting variation is a difficult challenge for SIFT‐based facial recognition systems, where significant degradation of performance has been reported. To develop a robust system under these conditions, variation in lighting must be first eliminated. Additionally, SIFT parameter default values that remove unstable keypoints and inadequately matched keypoints are not well‐suited to images with illumination variation. SIFT keypoints can also be incorrectly matched when using the original SIFT matching method. To overcome this issue, the authors propose propose a method for removing the illumination variation in images and correctly setting SIFT's main parameter values (contrast threshold, curvature threshold, and match threshold) to enhance SIFT feature extraction and matching. The proposed method is based on an estimation of comparative image lighting quality, which is evaluated through an automatic estimation of gamma correction value. Through facial recognition experiments, the authors find significant results that clearly illustrate the importance of the proposed robust recognition system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.