Abstract

Abstract The purpose of this research is to determine the feasibility of automatically generating adaptive feedrates for five-axis CNC end milling. The complicated geometries involved with multiaxis machining make it difficult to manually estimate acceptable feedrates without being overly conservative. Our strategy is to use a computer simulation of the machining process to estimate the feeds based on in-process cutting information. The simulation consists of two distinct portions: a discrete geometric model of the material removal process, and a discrete mechanistic model of the cutting forces involved. The mechanistic model estimates cutting forces as a function of material properties of the stock and cutting tool, cut geometry, and feedrate. Used in an inverse manner, the mechanistic model can estimate the feedrates necessary to maintain a constant cutting force. This force may be selected to maintain a desired part tolerance, or to meet some other criteria (e.g. machine constraints). The cut geometry information required by the inverse mechanistic model is provided by the geometric model of the material removal process. The geometric model also dynamically stores in-process stock geometry as the simulation progresses. The results of this research has shown that it is possible to automatically generate adaptive feeds using these combined models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.