Abstract

Phase-shifting profilometry (PSP) via sequential fringe projection is applicable for high-accuracy 3-D measurements of static objects. However, moving objects cannot be static or quasi-static during one projection cycle, thereby causing surface misalignment and phase errors in 3-D measurements. This article proposes a motion-estimated PSP based on the fringe-oriented synthetic phase correlation algorithm (FO-SPCA), which achieves automatic 3-D measurements of objects in nonuniform 2-D motion. To robustly estimate the motion of objects among fringe images, the proposed fringe-oriented feature extraction technique obtains the surface features by eliminating the modulation influence of sinusoidal illumination. Furthermore, the FO-SPCA is developed to accurately detect the subpixel displacements of moving objects according to object surface features. With the subpixel displacements, the alignment procedure is completed through a reverse 2-D transformation and then the phase errors are compensated accordingly. The simulation and experimental results verify the feasibility and robustness of the motion-estimated PSP for the in situ 3-D measurements of nonuniform moving objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.