Abstract

In this paper, we present a new feedback method to automatically servo-control the 3-D shape of soft objects with robotic manipulators. The soft object manipulation problem has recently received a great deal of attention from robotics researchers because of its potential applications in, e.g., food industry, home robots, medical robotics, and manufacturing. A major complication to automatically control the shape of an object is the estimation of its deformation properties, which determines how the manipulator's motion actively transforms into deformations. Note that these properties are rarely known beforehand, and its offline parametric identification is difficult and/or impractical to conduct in many applications. To cope with this issue, we developed a new algorithm that computes in real time the unknown deformation parameters of a soft object; this algorithm provides a valuable adaptive behavior to the deformation controller, something we cannot achieve with traditional fixed-model approaches. In contrast with most controllers in the literature, our new method can explicitly servo-control 3-D deformations (and not just 2-D image projections) in an entirely model-free way. To validate the proposed adaptive controller, we present a detailed experimental study with robotic manipulators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.