Abstract

Background Cardiac MRI examinations for valvular heart diseases have recently been a focus of attention [1]. However, the slice-alignment settings for valvular heart diseases are complex, difficult, and time-consuming operations. The purpose of this study is to develop an advanced automatic slice-alignment method that simultaneously detects the six left-ventricular planes (vertical long-axis, horizontal long-axis, short-axis, 4-chamber, 2-chamber, and 3-chamber views), the four right-ventricular planes (short-axis, 4-chamber, 2-chamber, and 3-chamber views), and also the four cardiac valvular planes (LVOT, RVOT, aortic valve, and pulmonary valve views) by extension of a previous work [2]. “’How I do’ CMR in valvular heart disease”, http://www.scmr.org.

Highlights

  • Cardiac MRI examinations for valvular heart diseases have recently been a focus of attention [1]

  • ECG-gated 2D steady-state free precession (SSFP) axial multislice cine images covering the entire cardiac region were acquired using a 1.5-T MRI scanner (Excelart VantageTM powered by Atlas, Toshiba Medical Systems) during a single breath-hold with TR/TE = 4.2/2.1, matrix = 198 × 256, number of slices = 16-20, and one image per R-R interval in approximately 20 seconds

  • The directions of the aorta and pulmonary artery were detected based on the distribution of the image gradient around the detected anatomical features

Read more

Summary

Background

Cardiac MRI examinations for valvular heart diseases have recently been a focus of attention [1]. The slice-alignment settings for valvular heart diseases are complex, difficult, and time-consuming operations. The purpose of this study is to develop an advanced automatic slice-alignment method that simultaneously detects the six left-ventricular planes (vertical long-axis, horizontal long-axis, short-axis, 4-chamber, 2-chamber, and 3-chamber views), the four right-ventricular planes (short-axis, 4-chamber, 2-chamber, and 3-chamber views), and the four cardiac valvular planes (LVOT, RVOT, aortic valve, and pulmonary valve views) by extension of a previous work [2]. “’How I do’ CMR in valvular heart disease”, http://www.scmr.org The purpose of this study is to develop an advanced automatic slice-alignment method that simultaneously detects the six left-ventricular planes (vertical long-axis, horizontal long-axis, short-axis, 4-chamber, 2-chamber, and 3-chamber views), the four right-ventricular planes (short-axis, 4-chamber, 2-chamber, and 3-chamber views), and the four cardiac valvular planes (LVOT, RVOT, aortic valve, and pulmonary valve views) by extension of a previous work [2]. “’How I do’ CMR in valvular heart disease”, http://www.scmr.org

Methods
Results
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.