Abstract

In forensic medical investigations, physical injuries are documented with photographs accompanied by written reports. Automatic segmentation and classification of wounds on these photographs could provide forensic pathologists with a tool to improve the assessment of injuries and accelerate the reporting process. In this pilot study, we trained and compared several preexisting deep learning architectures for image segmentation and wound classification on forensically relevant photographs in our database. The best scores were a mean pixel accuracy of 69.4% and a mean intersection over union (IoU) of 48.6% when evaluating the trained models on our test set. The models had difficulty distinguishing the background from wounded areas. As an example, image pixels showing subcutaneous hematomas or skin abrasions were assigned to the background class in 31% of cases. Stab wounds, on the other hand, were reliably classified with a pixel accuracy of 93%. These results can be partially attributed to undefined wound boundaries for some types of injuries, such as subcutaneous hematoma. However, despite the large class imbalance, we demonstrate that the best trained models could reliably distinguish among seven of the most common wounds encountered in forensic medical investigations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.