Abstract

Refined edible oils and fats are known to contain olefins resisting the typical epoxidation used for the sample preparation of mineral oil saturated and aromatic hydrocarbons (MOSH and MOAH). These olefins can be misinterpreted as MOAH and are therefore an important reason for inconsistent results between laboratories. Collaborative trials confirm this assumption for low MOAH contents near the quantitation limits regularly. In the scope of this work, a new epoxidation approach was developed. Persistent olefins in refined oils could be successfully epoxidized with performic acid. The reaction kinetics was investigated using model substances for biogenic olefins and MOAH. It was rationalized why certain olefins resist epoxidation and which MOAH can potentially get lost. A prominent peak cluster in the MOAH fraction of refined palm oils could be identified by means of GC-MS and explained why it cannot be epoxidized. Based upon this, an automated and streamlined workflow for sample preparation and analysis was composed tackling major problems identified in previously published methods. Optimized and miniaturized saponification, extraction, epoxidation, and enrichment paired with online LC-GC-FID led to a robust method that was tested and validated for edible oils and fats (RSDR < 7% for MOSH and MOAH at values of 14.9 and 2.1 mg/kg, respectively). Due to increased sample amount and minimized blank values, quantitation limits below 1 mg/kg for MOSH and MOAH were achieved. The trueness of the method was verified by analyzing collaborative trial samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call