Abstract

Purpose: Repeated injections of linear gadolinium-based contrast agent (GBCA) have shown correlations with increased signal intensities (SI) on unenhanced T1-weighted (T1w) images. Assessment is usually performed manually on a single slice and the SI as an average of a freehand region-of-interest is reported. We aim to develop a fully automated software that segments and computes SI ratio of dentate nucleus (DN) to pons (DN/P) and globus pallidus (GP) to thalamus (GP/T) for the assessment of gadolinium presence in the brain after a serial GBCA administrations. Approach: All patients ( ) underwent at least eight GBCA enhanced scans. The modal SI in the DN, GP, pons, and thalamus were measured volumetrically on unenhanced T1w images and corrected based on the reference protocol (measurement 1) and compared to the SI-uncorrected-modal-volume (measurement 2), SI-corrected-mean-volume (measurement 3), as well as SI-corrected-modal-single slice (measurement 4) approaches. Results: Automatic processing worked on all 2119 studies (1150 at 1.5T and 969 at 3T). DN/P were (1.5T) and (3T). GP/T were (1.5T) and (3T). Modal DN/P ratios from volumetric assessment at 1.5T failed to show a statistical difference with or without SI corrections ( ). All other -tests demonstrated significant differences (measurement 2, 3, 4 compared to 1, ). Conclusion: The fully automatic method is an effective powerful tool to streamline the analysis of SI ratios in the deep brain tissues. Divergent SI ratios using different approaches reinforces the need to standardize the measurement for the research in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.