Abstract

Objective To compare the performance of a selection of machine learning algorithms, trained to label peaks I, III, and V of the auditory brainstem response (ABR) waveform. An additional algorithm was trained to provide a confidence measure related to the ABR wave latency estimates. Design Secondary data analysis of a previously published ABR dataset. Five types of machine learning algorithm were compared within a nested k-fold cross-validation procedure. Study sample A set of 482 suprathreshold ABR waveforms were used. These were recorded from 81 participants with audiometric thresholds within normal limits. Results A convolutional recurrent neural network (CRNN) outperformed the other algorithms evaluated. The algorithm labelled 95.9% of ABR waves within ±0.1 ms of the target. The mean absolute error was 0.025 ms, averaged across the outer validation folds of the nested cross-validation procedure. High confidence levels were generally associated with greater wave-labelling accuracy. Conclusions Machine learning algorithms have the potential to assist clinicians with ABR interpretation. The present work identifies a promising machine learning approach, but any algorithm to be used in clinical practice would need to be trained on a large, accurately labelled, heterogeneous dataset and evaluated in clinical settings in follow-on work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.