Abstract

Remote sensing is essential for monitoring fisheries. Optical sensors such as the day–night band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) have been a crucial tool for detecting vessels fishing at night. It remains challenging to ensure stable detections under various conditions affected by the clouds and the moon. Here, we develop a machine learning based algorithm to generate automatic and consistent vessel detection. As DNB data are large and highly imbalanced, we design a two-step approach to train our model. We evaluate its performance using independent vessel position data acquired from on-ship radar. We find that our algorithm demonstrates comparable performance to the existing VIIRS boat detection algorithms, suggesting its possible application to greater temporal and spatial scales. By applying our algorithm to the East China Sea as a case study, we reveal a recent increase in fishing activity by vessels using bright lights. Our VIIRS boat detection results aim to provide objective information for better stock assessment and management of fisheries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.