Abstract

<span id="docs-internal-guid-c8cba487-7fff-2314-f38a-f2936a74e0fd"><span>Automated segmentation of a tumor is still a considerably exciting research topic in the medical imaging processing field, and it plays a considerable role in forming a right diagnosis, to aid effective medical treatment. In this work, a fully automated system for segmentation of the brain tumor in MRI images is introduced. The suggested system consists of three parts: Initially, the image is pre-processed to enhance contrast, eliminate noise, and strip the skull from the image using filtering and morphological operations. Secondly, segmentation of the image happens using two techniques, fuzzy c-means clustering (FCM) and with the application of a seeded region growing algorithm (SGR). Thirdly, this method proposes a post-processing step to smooth segmentation region edges using morphological operations. The testing of the proposed system involved 233 patients, which included 287 MRI images. A comparison of the results ensued, with the manual verification of the traces performed by doctors, which ultimately proved an average Dice Coefficient of 90.13% and an average Jaccard Coefficient of 82.60% also, by comparison with traditional segmentation techniques such as FCM method. The segmentation results and quantitative data analysis demonstrates the effectiveness of the suggested system.</span></span>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call