Abstract
Research and biomedical applications in cell surgery require transportation and rotation of biological cells. In these cell manipulation tasks, the cell of interest must be translated and oriented properly such that the desired component, such as the polar body or other organelles, can be imaged with optical microscopy. This paper presents a holographic optical tweezers (HOT) based system to carry out automated translational control in the plane, and rotational control about one rotational axes of a suspended cell. Based on the proposed general equations of motion of the cell, held in an optical trap, two controllers, one for cell translational and one for rotational control, are developed to translate and orient the cells to the desired position and orientation in a sequential manner. Experiments are performed to demonstrate the effectiveness of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Automation Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.