Abstract

This study presents an automated methodology to generate training data for surface water mapping from a single Sentinel-2 granule at 10 m (4 band, VIS/NIR) or 20 m (9 band, VIS/NIR/SWIR) resolution without the need for ancillary training data layers. The 20 m method incorporates an ensemble of three spectral indexes with optimal band thresholds, whereas the 10 m method achieves similar results using fewer bands and a single spectral index. A spectrally balanced and randomly generated set of training data based on the index values and optimal thresholds is used to fit machine learning classifiers. Statistical validation compares the 20 m ensemble-only method to the 20 m ensemble method with a random forest classifier. Results show the 20 m ensemble-only method had an overall accuracy of 89.5% (±1.7%), whereas the ensemble method combined with the random forest classifier performed better, with a ~4.8% higher overall accuracy: 20 m method (94.3% (±1.3%)) with optimal spectral index and SWIR thresholds of −0.03 and 800, respectively, and 10 m method (93.4% (±1.5%)) with optimal spectral index and NIR thresholds of −0.01 and 800, respectively. Comparison of other supervised classifiers trained automatically with the framework typically resulted in less than 1% accuracy improvement compared with the random forest, suggesting that training data quality is more important than classifier type. This straightforward framework enables accurate surface water classification across diverse geographies, making it ideal for development into a decision support tool for water resource managers.

Highlights

  • This study presents an automated methodology to generate training data for surface water mapping from a single Sentinel-2 granule at 10 m (4 band, VIS/NIR) or 20 m (9 band, VIS/NIR/SWIR)

  • We subsequently evaluated the optimal thresholds for the SWIR (20 m) and NIR (10 m) datasets applied in conjunction with the optimal spectral index threshold and random forest classifier

  • This study developed methodologies using Sentinel-2 20 m and 10 m Bottom of Atmosphere (BoA) cloudmasked imagery and a method to automatically generate training data for subsequent classification of surface water extent using a random forest classifier

Read more

Summary

Introduction

This study presents an automated methodology to generate training data for surface water mapping from a single Sentinel-2 granule at 10 m (4 band, VIS/NIR) or 20 m (9 band, VIS/NIR/SWIR). Comparison of other supervised classifiers trained automatically with the framework typically resulted in less than 1% accuracy improvement compared with the random forest, suggesting that training data quality is more important than classifier type. This straightforward framework enables accurate surface water classification across diverse geographies, making it ideal for development into a decision support tool for water resource managers. Surface water extent is temporally dynamic, impacted by natural and anthropogenic drivers such as precipitation, evaporation, irrigation, dams, flooding, and glacier melt

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.