Abstract

An automated model is developed to support the optimization of the planning and scheduling of repetitive construction projects. The model provides the capability of optimizing two important objectives commonly sought in scheduling repetitive construction projects: minimizing project duration; and minimizing project cost. The model performs this multi‐objective optimization using a genetic algorithm approach. The output of the model is a set of optimal solutions that represent the trade‐off between time and cost in planning repetitive construction projects. Furthermore, the model can be utilized to find a single scheduling solution that provides the minimum overall project cost by simply adding project indirect cost to the obtained project direct cost for each of the obtained scheduling solutions on the Pareto optimal curve. Other important time‐related costs are also considered in the model including: early completion incentives, late completion penalties and lane rental costs. Providing the planners of repetitive construction projects with an automated set of optimal time–cost trade‐off solutions should contribute to cost‐effective and speedy delivery of this type of construction project. An application example is analysed to illustrate the use of the model and demonstrate its capabilities in generating optimal trade‐off solutions between minimizing the project time and cost for repetitive construction projects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call