Abstract

AbstractWe present a methodology for establishing the existence of quadratic Lyapunov inequalities for a wide range of first-order methods used to solve convex optimization problems. In particular, we consider (i) classes of optimization problems of finite-sum form with (possibly strongly) convex and possibly smooth functional components, (ii) first-order methods that can be written as a linear system on state-space form in feedback interconnection with the subdifferentials of the functional components of the objective function, and (iii) quadratic Lyapunov inequalities that can be used to draw convergence conclusions. We present a necessary and sufficient condition for the existence of a quadratic Lyapunov inequality within a predefined class of Lyapunov inequalities, which amounts to solving a small-sized semidefinite program. We showcase our methodology on several first-order methods that fit the framework. Most notably, our methodology allows us to significantly extend the region of parameter choices that allow for duality gap convergence in the Chambolle–Pock method when the linear operator is the identity mapping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.