Abstract

Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of progressive liver pathologies, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. A liver biopsy is currently required to stratify high-risk patients, and predicting the degree of liver inflammation and fibrosis using non-invasive tests remains challenging. Here, we sought to develop a novel, cost-effective screening tool for NAFLD based on thermal imaging. We used a commercially available and non-invasive thermal camera and developed a new image processing algorithm to automatically predict disease status in a small animal model of fatty liver disease. To induce liver steatosis and inflammation, we fed C57/black female mice (8 weeks old) a methionine-choline deficient diet (MCD diet) for 6 weeks. We evaluated structural and functional liver changes by serial ultrasound studies, histopathological analysis, blood tests for liver enzymes and lipids, and measured liver inflammatory cell infiltration by flow cytometry. We developed an image processing algorithm that measures relative spatial thermal variation across the skin covering the liver. Thermal parameters including temperature variance, homogeneity levels and other textural features were fed as input to a t-SNE dimensionality reduction algorithm followed by k-means clustering. During weeks 3,4, and 5 of the experiment, our algorithm demonstrated a 100% detection rate and classified all mice correctly according to their disease status. Direct thermal imaging of the liver confirmed the presence of changes in surface thermography in diseased livers. We conclude that non-invasive thermal imaging combined with advanced image processing and machine learning-based analysis successfully correlates surface thermography with liver steatosis and inflammation in mice. Future development of this screening tool may improve our ability to study, diagnose and treat liver disease.

Highlights

  • Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of progressive liver pathologies, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis

  • NAFLD encapsulates a spectrum of progressive liver pathologies, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis, and ­cirrhosis[2]

  • To assess the ability of our imaging technique to detect liver pathology associated with NAFLD, we first sought to establish a robust model of liver steatosis and i­nflammation[10,11]

Read more

Summary

Introduction

Non-alcoholic fatty liver disease (NAFLD) comprises a spectrum of progressive liver pathologies, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), fibrosis and cirrhosis. We conclude that non-invasive thermal imaging combined with advanced image processing and machine learning-based analysis successfully correlates surface thermography with liver steatosis and inflammation in mice. Future development of this screening tool may improve our ability to study, diagnose and treat liver disease. We have recently demonstrated that non-invasive thermal imaging combined with advanced image processing algorithms and machine learning-based analysis can correlate surface thermography with structural changes in internal organs of mice such as the ­heart[8]. We sought to use a novel thermal image processing algorithm to automatically diagnose and monitor liver steatosis and inflammation in a small animal model of fatty liver disease in mice fed a methionine-choline deficient (MCD) diet. We aim to develop a new cost-effective screening modality for patients with liver steatosis and other animal models of chronic liver disease (Fig. 1)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.