Abstract
In this paper, an efficient approach for human face recognition based on the use of minutiae points in thermal face image is proposed. The thermogram of human face is captured by thermal infra-red camera. Image processing methods are used to pre-process the captured thermogram, from which different physiological features based on blood perfusion data are extracted. Blood perfusion data are related to distribution of blood vessels under the face skin. In the present work, three different methods have been used to get the blood perfusion image, namely bit-plane slicing and medial axis transform, morphological erosion and medial axis transform, sobel edge operators. A five layer feed-forward back propagation neural network is used as the classification tool. It has been found that the first method supercedes the other two producing an accuracy of 97.62% with block size 16×16 for bit-plane 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Intelligence Studies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.