Abstract
The nonstationary characteristics present in electroencephalogram (EEG) signal require a crucial analysis that can reveal a method for diagnosis of neurological abnormalities, especially epilepsy. This article presents a new technique for automated classification of epileptic EEG signals based on iterative filtering (IF) of EEG signals. The superiority of IF over empirical mode decomposition for the classification of seizure EEG signals is presented. In this article, EEG epochs are decomposed into their intrinsic mode functions (IMFs) using IF. Amplitude envelope (AE) function is extracted from these modes, using the discrete separation energy algorithm. The features are extracted from these IMFs and AE functions. The feature set includes K-nearest neighbor entropy estimator, log energy entropy, Shannon entropy, and Poincar $\acute{\text{e}}$ plot parameters. These features are tested for their discriminative strength, on the basis of their $p$ -values, for classification of EEG signals into seizure, seizure-free, and normal classes. This proposed methodology has obtained a high classification accuracy using random forest classifier and takes far less time, which can be suitable for real-time implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.