Abstract

A procedure for the separation of principal stresses in automated photoelasticity is presented. It is based on the integration of indefinite equations of equilibrium along stress trajectories, also known as Lame-Maxwell equations. A new algorithm for precise and reliable stress trajectory calculation, which is an essential feature of the procedure, has also been developed. Automated stress separation is carried out along stress trajectories starting from free boundaries. Experimental tests were performed on a disc in diametral compression and on a ring with internally applied pressure. Full-field principal stress values were obtained and results were compared with those from the theory of elasticity and with those obtained from the classical shear difference method. It was shown that the proposed method is more accurate and less affected by the presence of residual stresses or experimental errors at the boundaries than the shear difference method. In addition, the method requires little human interaction and is therefore well-suited for automated photoelasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.