Abstract

In multiple cell recordings identifying the number of neurons and assigning each action potential to a particular source, commonly referred to as ‘spike sorting’, is a highly non-trivial problem. Density grid contour clustering provides a computationally efficient way of locating high-density regions of arbitrary shape in low-dimensional space. When applied to waveforms projected onto their first two principal components, the algorithm allows the extraction of templates that provide high-dimensional reference points that can be used to perform accurate spike sorting. Template matching using subtractive waveform decomposition can locate these templates in waveform samples despite the influence of noise, spurious threshold crossing and waveform overlap. Tests with a large synthetic dataset incorporating realistic challenges faced during spike sorting (including overlapping and phase-shifted spikes) reveal that this strategy can consistently yield results with less than 6% false positives and false negatives (and less than 2% for high signal-to-noise ratios) at processing speeds exceeding those previously reported for similar algorithms by more than an order of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.