Abstract
BackgroundLab-on-a-disc (LoaD) technology has emerged as a transformative approach for point-of-care diagnostics and high-throughput testing. The promise of integrating multiple laboratory functions onto a single integrated platform has significant implications for healthcare, especially in resource-limited settings. However, one of the primary challenges faced in the design and manufacture of LoaD devices is the integration of effective valving mechanisms. These valves are essential for fluid control and routing, but their intricacy often leads to complexities in design and increased vulnerability to failure. This emphasizes the need for improved designs and manufacturing processes without complex, integrated valving mechanisms. (96) ResultsWe describe a fully automated biological workflow and reagent actuation on a LoaD device without an integrated valving system. The Two Degrees-of-Freedom (2DoF) custom centrifuge alters the centre of rotation, facilitating fluid flow direction changes on the microfluidic platform through a custom programmed interface. A novel 360-degree fluid manipulation approach via secondary planetary gear motion enabled sequential assay reagent actuation without embedded valve triggering, with the addition of infinite incubation times and efficient use of platform realty. The simplified LoaD platform uses clever design, with intermediate flow chambers to avoid cross contamination between reagent steps. Notably, the optimized LoaD platform demonstrated a two-fold DNA yield at higher HEK-293 cell concentrations compared to commercially available spin-column kits. This significantly simplified LoaD platform successfully automated a common, complex workflow without inhibiting DNA purification. (129) SignificanceThis system exhibits the clever coupling of both 2DoF and centrifugal microfluidics to create an autonomous testing package capable of eradicating the need for complex valving systems to automate biological workflows on LoaDs. This automated system has outperformed commercially available DNA extraction kits for higher cell counts. The platform's elimination of valve requirements ensures unlimited sample incubation times and enhances reliability, making it a straightforward option for automated biological workflows, particularly in diagnostics. (73)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.