Abstract

Simple Sequence Repeat (SSR) allele sizing provides a useful tool for genotype identification, pedigree analysis, and for estimating genetic distance between organisms. Soybean [Glycine max (L.) Merr.] cultivars are identified for Plant Variety Protection (PVP) purposes by standard pigmentation and morphological traits. However, many commercial soybeans arise from a limited number of elite lines and are often indistinguishable based on these traits. A system based on SSR markers would provide unique DNA profiles of cultivars. Fluorescent labeling of alleles combined with automated sizing with internal size standards in each gel lane was used as an alternative to standard [32P] labeling to assess genetic variability in soybean. Allelic frequencies at 20 SSR loci were determined in 35 soybean genotypes that account for greater than 95% of the alleles in North American soybean cultivars based upon pedigree analysis. An average of 10.1 alleles per locus (range: 5–17), with a mean gene diversity of 0.80 (range: 0.50 to 0.87) were observed at the 20 SSR loci. The 20 loci successfully distinguished modern soybean cultivars that are identical for morphological and pigmentation traits, as well as 7 soybean genotypes reported to be indistinguishable using 17 RFLP probes. Pedigrees of 7 cultivars were studied to estimate stability of SSRs in soybean across generations. Of the 7 pedigrees 6 had one locus in the progeny with an allele(s) that was not present in either parent. These new alleles are most likely the result of mutation. The mutation rate of SSR alleles in soybean was similar to that reported in humans. To avoid difficulty associated with mutation, DNA fingerprint data should be determined from the bulk of 30-50 plants of a cultivar.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.