Abstract

Trabecular bone possesses a complex hierarchical structure of plate- and strut-like elements, which is analogous to structural systems encountered in engineering practice. In this work, key structural features of trabecular bone are mimicked to uncover effective energy dissipation mechanisms under blast loading. To this end, several key design parameters were identified to develop a bone-like unit cell. A computer script was then developed to automatically generate bone-like finite element models with many combinations of these design parameters, which were simulated under blast loading. The optimal structure was identified and its performance was benchmarked against traditional engineered cellular structures, including those with hexagonal, re-entrant and square cellular geometries. The bone-like structure showed superior performance over its engineered counterparts using the peak transmitted reaction force and energy dissipation as the key performance criteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.