Abstract
This work presents a robust and comprehensive approach for the in vivo automated segmentation and quantitative tissue volume measurement of normal brain composition from multispectral magnetic resonance imaging (MRI) data. Statistical pattern recognition methods based on a finite mixture model are used to partition the intracranial volume into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) spaces. A masking algorithm initially extracts the brain volume from surrounding extrameningeal tissue. Radio frequency (RF) field inhomogeneity effects in the images are then removed using a recursive method that adapts to the intrinsic local tissue contrast. Our technique supports heterogeneous data with multispectral MR images of different contrast and intensity weighting acquired at varying spatial resolution and orientation. The proposed image segmentation methods have been tested using multispectral T1-, proton density-, and T2-weighted MRI data from young and aged non-human primates as well as from human subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.