Abstract
Various kinds of cancer are detected and diagnosed using histopathological analysis. Recent advances in whole slide scanner technology and the shift towards digitisation of whole slides have inspired the application of computational methods on histological data. Digital analysis of histopathological images has the potential to tackle issues accompanying conventional histological techniques, like the lack of objectivity and high variability. In this paper, we present a framework for the automated segmentation of nuclei from human histopathological whole slide images, and their classification using morphological and colour characteristics of the nuclei. The segmentation stage consists of two methods, thresholding and the watershed transform. The features of the segmented regions are recorded for the classification stage. Experimental results show that the knowledge from the selected features is capable of classifying a segmented object as a candidate nucleus and filtering out the incorrectly identified segments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biomedical Engineering and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.