Abstract

Monitoring the health and safety of forests has become a rising problem with the advent of global wildfires, rampant logging, and reforestation efforts. This paper proposes a model for the automatic segmentation and classification of aerial forest imagery. The model is based on U-net architecture and relies on dice coefficients, binary cross-entropy, and accuracy as loss functions. While models without autoencoder-based structures can only reach a dice coefficient of 45%, the proposed model can achieve a dice coefficient of 79.85%. In addition, for barren adn dense forestry image classification, the proposed model can achieve 82.51%. This paper demonstrates how complex convolutional neural networks can be applied to aerial forest images to help preserve and save the forest environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call