Abstract

Hyperspectral images of the Earth’s surface are increasingly being acquired from aerial platforms. The dozens or hundreds of bands acquired by a typical hyperspectral sensor are acquired either through a scanning process or by collecting a sequence of images at varying wavelengths. This latter method has the advantage of acquiring coherent images of a scene at different wavelengths. However, it takes time to collect these images and some form of co-registration is required to build coherent image cubes. In this paper, we present a method to register many bands acquired sequentially at different wavelengths from a helicopter. We discuss the application of the Phase Correlation (PC) Method to recover scaling, rotation, and translation from an airborne hyperspectral imaging system, dubbed PHyTIS. This approach is well suited for remotely sensed images acquired from a moving platform, which induces image registration errors due to along and across track movement. We were able to register images to within ± 1 pixel across entire image cubes obtained from the PHyTIS hyperspectral imaging system, which was developed for precision farming applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call