Abstract

Dilatation of the cerebral ventricles is a common condition in preterm neonates with intraventricular hemorrhage (IVH). Post Hemorrhagic Ventricular Dilatation (PHVD) can lead to lifelong neurological impairment caused by ischemic injury due to increased intracranial pressure, and without treatment can lead to death. Previously, we have developed and validated a 3D ultrasound (US) system to monitor the progression of ventricle volumes (VV) in IVH patients; however, many patients with severe PHVD have ventricles so large they cannot be imaged within a single 3D US image. This limits the utility of atlas based segmentation algorithms required to measure VV as parts of the ventricles are in separate 3D US images, and thus, an already challenging segmentation becomes increasingly difficult to solve. Without a more automated segmentation, the clinical utility of 3D US ventricle volumes cannot be fully realized due to the large number of images and patients required to validate the technique in a clinical trials. Here, we describe the initial results of an automated ‘stitching’ algorithm used to register and combine multiple 3D US images of the ventricles of patients with PHVD. Our registration results show that we were able to register these images with an average target registration error (TRE) of 4.25±1.95 mm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.