Abstract

The detection, counting, and precise segmentation of white blood cells in cytological images are vital steps in the effective diagnosis of several cancers. This paper introduces an efficient method for automatic recognition of white blood cells in peripheral blood and bone marrow images based on deep learning to alleviate tedious tasks for hematologists in clinical practice. First, input image pre-processing was proposed before applying a deep neural network model adapted to cells localization and segmentation. Then, model outputs were improved by using combined predictions and corrections. Finally, a new algorithm that uses the cooperation between model results and spatial information was implemented to improve the segmentation quality. To implement our model, python language, Tensorflow, and Keras libraries were used. The calculations were executed using NVIDIA GPU 1080, while the datasets used in our experiments came from patients in the Hemobiology service of Tlemcen Hospital (Algeria). The results were promising and showed the efficiency, power, and speed of the proposed method compared to the state-of-the-art methods. In addition to its accuracy of 95.73%, the proposed approach provided fast predictions (less than 1s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.