Abstract
Diffusion magnetic resonance imaging tractography allows investigating brain structural connections in a noninvasive way and has been widely used for understanding neurological disease. Quantification of brain connectivity along with its length by dividing a fiber bundle into multiple segments (node) is a powerful approach to assess biological properties, which is termed as tractometry. However, current tractometry methods face challenges in node identification along with the length of complex bundles whose morphology is difficult to summarize. In addition, the anatomic measure reflecting the macroscopic fiber cross-section has not been followed in previous tractometry. In this paper, we propose an automated fiber bundle quantification, which we refer to as ClusterMetric. The ClusterMetric uses a data-driven approach to identify fiber clusters corresponding to subdivisions of the white matter anatomy and identify consistent space nodes along the length of clusters across individuals. The proposed method is demonstrated by applicating to our collected dataset including 23 Alzheimer's disease (AD) patients and 22 healthy controls (HCs) and a public dataset of ADNI including 53 AD patients and 85 HCs. The altered white matter tracts in AD group are observed using both datasets, which involve several major fiber tracts including the corpus callosum, corona-radiata-frontal, arcuate fasciculus, inferior occipito-frontal fasciculus, uncinate fasciculus, thalamo-frontal, superior longitudinal fasciculus, inferior cerebellar peduncle, cingulum bundle, and extreme capsule. These fiber clusters represent the white matter connections that could be most affected in AD, suggesting the ability of our method in identifying potential abnormalities specific to local regions within a fiber cluster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.