Abstract

ABSTRACTAn enhanced technique using image processing has been developed for automated ultrasonic inspection of composite materials, such as glass/carbon-fibre-reinforced polymer (GFRP or CFRP), to ascertain their structural healthiness. The proposed technique is capable of identifying the abnormality features buried in the composite by image filtering and segmentation applied to ultrasonic C-Scan images. This work presents results performed on two composite samples with simulated delamination defects. A local gating scheme is applied to raw A-Scan data for improved contrast between defective and healthy regions in the produced C-Scan image. In this test campaign, different filtering and thresholding algorithms are evaluated and compared in terms of their effectiveness on defect identification. The accuracies of less than 3 mm and 1.11 mm were attained for the defect size and depth, respectively. The results demonstrates the applicability of the proposed technique for accurate defect localization and characterization of composite materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.