Abstract
An automated quality assessment technique is proposed for rapidly detecting excessive size variations during the production of stone aggregates. The system uses a laser profiler to scan collections of aggregate particles and obtain three-dimensional data points on the particle surfaces. For computational efficiency, the resulting data are converted into digital images. Wavelet transforms are then applied to the images to extract features indicative of the material gradation. These wavelet-based features are used as inputs to an artificial neural network, which is trained to classify the aggregate sample. Taken together, these components form a neural network-based classification system that can determine whether or not an aggregate product is in compliance with a given specification. Verification tests show that this approach could potentially help to determine, in an accurate and fast (real-time) manner, when adjustments or repairs to the production equipment are needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.