Abstract

Background and objectiveThe automatic segmentation of psoriasis lesions from digital images is a challenging task due to the unconstrained imaging environment and non-uniform background. Existing conventional or machine learning-based image processing methods for automatic psoriasis lesion segmentation have several limitations, such as dependency on manual features, human intervention, less and unreliable performance with an increase in data, manual pre-processing steps for removal of background or other artifacts, etc. MethodsIn this paper, we propose a fully automatic approach based on a deep learning model using the transfer learning paradigm for the segmentation of psoriasis lesions from the digital images of different body regions of the psoriasis patients. The proposed model is based on U-Net architecture whose encoder path utilizes a pre-trained residual network model as a backbone. The proposed model is retrained with a self-prepared psoriasis dataset and corresponding segmentation annotation of the lesion. ResultsThe performance of the proposed method is evaluated using a five-fold cross-validation technique. The proposed method achieves an average Dice Similarity Index of 0.948 and Jaccard Index of 0.901 for the intended task. The transfer learning provides an improvement in the segmentation performance of about 4.4% and 7.6% in Dice Similarity Index and Jaccard Index metric respectively, as compared to the training of the proposed model from scratch. ConclusionsAn extensive comparative analysis with the state-of-the-art segmentation models and existing literature validates the promising performance of the proposed framework. Hence, our proposed method will provide a basis for an objective area assessment of psoriasis lesions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.