Abstract

In industrial artificial teeth manufacturing, nowadays a high level of automation is utilized to produce a large quantity of teeth in short production cycles. As a large variety of different product shapes and colors have to be processed on a single machine, the creation of efficient production schedules becomes a very challenging task. Due to the complexity of the problem and several cost minimization objectives that need to be considered, there usually is a large potential to improve the currently manually created schedules with automated solution methods. In this paper, we formally specify and solve a novel challenging real-life machine batch scheduling problem from the area of artificial teeth manufacturing. Additionally, we provide a collection of real-life benchmark instances that can be used to evaluate solution methods for the problem. To efficiently solve the problem, we propose an innovative construction heuristic and metaheuristic approach as well as an exact method using constraint programming. An extensive experimental evaluation shows that exact techniques can efficiently solve small scheduling scenarios and can provide optimal solutions for four instances. Furthermore, we show that the proposed metaheuristic approach is able to reach optimal results for small instances and can find high quality solutions also for large real-life benchmark instances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call