Abstract

AbstractWe present a novel automated processing method for obtaining layer dip from radio-echo sounding (RES) data. The method is robust, easily applicable and can be used to process large (several terabytes) ground and airborne RES datasets using modest computing resources. We give test results from the application of the method to two Antarctic datasets: the Fletcher Promontory ground-based radar dataset and the Wilkes Subglacial Basin airborne radar dataset. The automated RES processing (ARESP) method comprises the basic steps: (1) RES noise reduction; (2) radar layer identification; (3) isolation of individual ‘layer objects’; (4) measurement of orientation and other object properties; (5) elimination of noise in the orientation data; and (6) collation of the valid dip information. The apparent dip datasets produced by the method will aid glaciologists seeking to understand ice-flow dynamics in Greenland and Antarctica: ARESP could enable a shift from selective regional case studies to ice-sheet-scale studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.