Abstract

Measurements of low-frequency vibration are increasingly being used to assess the condition and performance of railway tracks. Displacements used to characterise the track movement under train loads are commonly obtained from velocity or acceleration signals. Artefacts from signal processing, which lead to a shift in the datum associated with the at-rest position, as well as variability between successive wheels, mean that interpreting measurements is non-trivial. As a result, deflections are often interpreted by inspection rather than following an algorithmic or statistical process. This can limit the amount of data that can be usefully analysed in practice, militating against widespread or long-term use of track vibration measurements for condition or performance monitoring purposes. This paper shows how the cumulative distribution function of the track deflection can be used to identify the at-rest position and to interpret the typical range of track movement from displacement data. This process can be used to correct the shift in the at-rest position in velocity or acceleration data, to determine the proportion of upward and downward movement and to align data from multiple transducers to a common datum for visualising deflection as a function of distance along the track. The technique provides a means of characterising track displacement automatically, which can be used as a measure of system performance. This enables large volumes of track vibration data to be used for condition monitoring.

Highlights

  • Motion transducers are increasingly being used to measure the low-frequency vibration of railway tracks to evaluate condition and performance

  • This paper has shown how the cumulative distribution functions can be used to identify the at-rest position in track deflection data obtained from velocity or acceleration measurements, overcoming artefacts from signal processing

  • The cumulative distribution function has a distinct shape, a steep region being associated with the at-rest position

Read more

Summary

Introduction

Motion transducers are increasingly being used to measure the low-frequency vibration of railway tracks to evaluate condition and performance. This means that the cumulative distribution function for the beam on an elastic foundation model can be used to determine values of probability suitable for identifying the at-rest position and classifying the range of track movement from displacement signals obtained from lineside measurements.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.