Abstract

Near infrared imaging spectrometers are key tools to investigate planetary surfaces in the Solar System. By coupling spectral and spatial information, they give access to the composition and morphology of the planets' surfaces which in turn provide insight into the geological state and history of the body. Processing and interpreting their datasets is however challenging owing to the very large amount of data they produce, a small subset of which contain relevant information, but also to numerous sources of errors, due to the instruments themselves or to observational biases, which further complicate the extraction of interesting but subtle spectral features. Collectively, these limitations have motivated the development of a set of tools that tackle these issues to facilitate the extraction of mineralogical information. The tools described here are successfully applied to the CRISM imaging spectrometer orbiting Mars in the search for hydrated silicates. An automated extraction of the hydrated silica signatures is performed at high accuracy and the discovery of a new mineral on Mars, epidote, is reported thanks to these new data reduction and analysis strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.