Abstract
BackgroundGallium-68 ([68Ga]Ga) labelled radiopharmaceuticals have become a valuable tool in clinical practice using Positron Emission Tomography (PET). These agents are typically produced on-site owing to the short half-life of [68Ga]Ga (68 min), which hinders distant transportation and often cannot comply with Good Manufacturing Practice (GMP) in hospital environments due to limited resources or infrastructure constraints. Moreover, full blown GMP production of radiopharmaceuticals under development can be prohibitively expensive. [68Ga]Ga-DOTA-CP04 is a promising peptide for imaging neuroendocrine tumors overexpressing the cholecyctokinin-2 receptor. Automation is an integral process in ensuring the radiopharmaceuticals produced under non-GMP conditions are of a uniform quality for routine clinical use. Herein, we describe the development of an automation platform, the iPHASE MultiSyn radiosynthesizer, to produce 68Ga-labelled DOTA-CP04 for routine clinical provision.ResultsThe use of the MultiSyn module for 68Ga-labelling of DOTA-CP04 was investigated. [68Ga]Ga-DOTA-CP04, was reproducibly prepared in high (> 70%) decay-corrected yields. [68Ga]Ga-DOTA-CP04 passed all predetermined acceptance criteria for human injection.Conclusions[68Ga]Ga-DOTA-CP04 was produced effectively using the MultiSyn module in a consistent and reproducible manner suitable for human injection.
Highlights
Gallium-68 ([68Ga]Ga) labelled radiopharmaceuticals have become a valuable tool in clinical practice using Positron Emission Tomography (PET)
As an example of this process of automation of a “niche” 68Ga-labelled radiotracer, we describe the automation of synthesis of [68Ga]Ga-DOTA-CP04, which is a promising radiopharmaceutical under study for the imaging of tumors overexpressing cholecystokinin-2 receptors (CCK-2R)
The automated production of [68Ga]Ga-DOTA-CP04 was completed in 22 min from the time the ITG generator was eluted (Additional file 1: Figure S6 displays a representative MultiSyn sequence used for the production of [68Ga]Ga-DOTA-CP04). [68Ga]Ga-DOTA-CP04 was prepared reproducibly in 74.8% ± 3.4% (n = 10) decay-corrected yield
Summary
Gallium-68 ([68Ga]Ga) labelled radiopharmaceuticals have become a valuable tool in clinical practice using Positron Emission Tomography (PET) These agents are typically produced on-site owing to the short half-life of [68Ga]Ga (68 min), which hinders distant transportation and often cannot comply with Good Manufacturing Practice (GMP) in hospital environments due to limited resources or infrastructure constraints. It is essential to produce radiopharmaceuticals in highly organized environments using rapid and well-established procedures (Kristensen, 1979) In this arena, automating the production of radiopharmaceuticals is a pivotal development that ensures the uniform quality of the end-product while minimizing the radiation burden on the operating radiochemist (Elsinga et al, 2010)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.