Abstract

BackgroundHIV/AIDS is a serious threat to public health. The emergence of drug resistance mutations diminishes the effectiveness of drug therapy for HIV/AIDS. Developing a computational prediction of drug resistance phenotype will enable efficient and timely selection of the best treatment regimens.ResultsA unified encoding of protein sequence and structure was used as the feature vector for predicting phenotypic resistance from genotype data. Two machine learning algorithms, Random Forest and K-nearest neighbor, were used. The prediction accuracies were examined by five-fold cross-validation on the genotype-phenotype datasets. A supervised machine learning approach for automatic prediction of drug resistance was developed to handle genotype-phenotype datasets of HIV protease (PR) and reverse transcriptase (RT). It predicts the drug resistance phenotype and its relative severity from a query sequence. The accuracy of the classification was higher than 0.973 for eight PR inhibitors and 0.986 for ten RT inhibitors, respectively. The overall cross-validated regression R2-values for the severity of drug resistance were 0.772–0.953 for 8 PR inhibitors and 0.773–0.995 for 10 RT inhibitors.ConclusionsMachine learning using a unified encoding of sequence and protein structure as a feature vector provides an accurate prediction of drug resistance from genotype data. A practical webserver for clinicians has been implemented.

Highlights

  • human immunodeficiency virus (HIV)/AIDS is a serious threat to public health

  • In the absence of an effective vaccine for HIV, current treatment of AIDS/HIV patients relies on Highly Active Antiretroviral Therapy (HAART)

  • The analysis reported here includes the detailed evaluation of model performance and the overall accuracy of prediction

Read more

Summary

Introduction

HIV/AIDS is a serious threat to public health. The emergence of drug resistance mutations diminishes the effectiveness of drug therapy for HIV/AIDS. Developing a computational prediction of drug resistance phenotype will enable efficient and timely selection of the best treatment regimens. In the absence of an effective vaccine for HIV, current treatment of AIDS/HIV patients relies on Highly Active Antiretroviral Therapy (HAART). HAART uses a combination of drugs that target different steps in the viral life cycle to prolong the life of patients. The antiviral drugs, and the structure and mechanism of their targets are reviewed in [1]. The viral enzymes, HIV-1 protease (PR) and reverse transcriptase (RT), are important and well characterized drug targets. The enzymatic activity of these two proteins is blocked by the antiviral PR inhibitors (PIs) and

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call