Abstract
Linear Discriminant Analysis (LDA) is an easy and efficient method for pattern classification, while it is also broadly utilized for the initial discovery of diseases using Electronic Health Records (EHR) data. Nonetheless, the performance of LDA for EHR data classification is recurrently influenced by two major factors: poor evaluation of LDA parameters (e.g., covariance matrix), and “linear inseparability” of the EHR data for classification. In this paper, we propose a novel classifier SDA -Sparse Discriminant Analysis method for heart disease detection. The time complexity will be reduced in this algorithm by optimal scoring analysis of LDA and will be comprehensive to execute sparse discrimination through the combination of Gaussians if limits between classes are nonlinear or if subgroups are available inside every class. On the whole, compared to previous techniques, our proposed technique is more appropriate for the diagnosis of heart disease patients with higher accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.