Abstract

Plasmonic nanoparticles, which have excellent local surface plasmon resonance (LSPR) optical and chemical properties, have been widely used in biology, chemistry, and photonics. The single-particle light scattering dark-field microscopy (DFM) imaging technique based on a color-coded analytical method is a promising approach for high-throughput plasmonic nanoparticle scatterometry. Due to the interference of high noise levels, accurately extracting real scattering light of plasmonic nanoparticles in living cells is still a challenging task, which hinders its application for intracellular analysis. Herein, we propose an automatic and high-throughput LSPR scatterometry technique using a U-Net convolutional deep learning neural network. We use the deep neural networks to recognize the scattering light of nanoparticles from background interference signals in living cells, which have a dynamic and complicated environment, and construct a DFM image semantic analytical model based on the U-Net convolutional neural network. Compared with traditional methods, this method can achieve higher accuracy, stronger generalization ability, and robustness. As a proof of concept, the change of intracellular cytochrome c in MCF-7 cells under UV light-induced apoptosis was monitored through the fast and high-throughput analysis of the plasmonic nanoparticle scattering light, providing a new strategy for scatterometry study and imaging analysis in chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.