Abstract

Automated pavement distress detection based on 2D images is facing various challenges. To efficiently complete the crack and pothole segmentation in a practical environment, an automated pixel-level pavement distress detection framework integrating stereo vision and deep learning is developed in this study. Based on the multi-view stereo imaging system, multi-feature pavement image datasets containing color images, depth images and color-depth overlapped images are established, providing a new perspective for deep learning. To alleviate computational burden, a modified U-net deep learning architecture introducing depthwise separable convolution is proposed for crack and pothole segmentation. These methods are tested in asphalt roads with different circumstances. The results show that the 3D pavement image achieves millimeter-level accuracy. The enhanced 3D crack segmentation model outperforms other models in terms of segmentation accuracy and inference speed. After obtaining the high-resolution pothole segmentation map, the automated pothole volume measurement is realized with high accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.