Abstract

Context. Nowadays, information technologies are widely used in digital image processing. The task of joint processing of satellite image obtained by different space systems that have different spatial differences is important. The already known pansharpening methods to improve the quality of the resulting image, there are new scientific problems associated with increasing the requirements for high-resolution image processing and the development of automated technology for processing the satellite data for further thematic analysis. Most spatial resolution techniques result in artifacts. Our work explores the major remote sensing data fusion techniques at pixel level and reviews the concept, principals, limitations and advantages for each technique with the program implementation of research. Objective. The goal of the work is analyze the effectiveness of the traditional pan-sharpening methods like the Brovey, the wavelet-transform, the GIHS, the HCT and the combined pansharpening method for satellite images of high-spatial resolution. Method. In this paper we propose the information technology for pansharpening high spatial resolution images with automation of choosing the best method based on the analysis of quantitative and qualitative evolutions. The method involves the scaling multispectral image to the size of the panchromatic image; using histogram equalization to adjust the primary images by aligning the integral areas of the sections with different brightness; conversion of primary images after the spectral correction on traditional pansharpening methods; analyze the effectiveness of the results obtained for conducts their detailed comparative visual and quantitative evaluation. The technology allows determining the best method of pansharpening by analyzing quantitative metrics: the NDVI index, the RMSE and the ERGAS. The NDVI index for the methods Brovey and HPF indicate color distortion in comparison with the reference data. This is due to the fact that the Brovey and HPF methods are based on the fusion of three channel images and do not include the information contained in the near infrared range. The RMSE and the ERGAS show the superiority of the combined HSVHCT-Wavelet method over the conventional and state-of-art image resolution enhancement techniques of high resolution satellite images. This is achieved, in particular, by preliminary processing of primary images, data processing localized spectral bases, optimized performance information, and the information contained in the infrared image. Results. The software implementing proposed method is developed. The experiments to study the properties of the proposed algorithm are conducted. Experimental evaluation performed on eight-primary satellite images of high spatial resolution obtained WorldView-2 satellite. The experimental results show that a synthesized high spatial resolution image with high information content is achieved with the complex use of fusion methods, which makes it possible to increase the spatial resolution of the original multichannel image without color distortions. Conclusions. The experiments confirmed the effectiveness of the proposed automated information technology for pansharpening high-resolution satellite images with the development of a graphical interface to obtain a new synthesized image. In addition, the proposed technology will effectively carry out further recognition and real-time monitoring infrastructure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call