Abstract
Today's paleomagnetic and magnetic proxy studies involve processing of large sample collections while simultaneously demanding high quality data and high reproducibility. Here we describe a fully automated interface based on a commercial horizontal pass-through “2G” DC-SQUID magnetometer. This system is operational at the universities of Bremen (Germany) and Utrecht (Netherlands) since 1998 and 2006, respectively, while a system is currently being built at NGU Trondheim (Norway). The magnetometers are equipped with “in-line” alternating field (AF) demagnetization, a direct-current bias field coil along the coaxial AF demagnetization coil for the acquisition of anhysteretic remanent magnetization (ARM) and a long pulse-field coil for the acquisition of isothermal remanent magnetization (IRM). Samples are contained in dedicated low magnetization perspex holders that are manipulated by a pneumatic pick-and-place-unit. Upon desire samples can be measured in several positions considerably enhancing data quality in particular for magnetically weak samples. In the Bremen system, the peak of the IRM pulse fields is actively measured which reduces the discrepancy between the set field and the field that is actually applied. Techniques for quantifying and removing gyroremanent overprints and for measuring the viscosity of IRM further extend the range of applications of the system. Typically c. 300 paleomagnetic samples can be AF demagnetized per week (15 levels) in the three-position protocol. The versatility of the system is illustrated by several examples of paleomagnetic and rock magnetic data processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.