Abstract

Electrical appliances most commonly consist of two electrical devices, namely, electrical motors and transformers. Typically, electrical motors are normally used in all sort of industrial purposes. Failures of such motors results in serious problems, such as overheat, shut down and even burnt, in their host systems. Thus, more attention have to be paid in detecting the outliers. In a similar way, to avoid the unexpected power reliability problems and system damages, the prediction of the failures in the transformers is expected to quantify the impacts. By predicting the failures, the lifetime of the transformers increases and unnecessary accidents is avoided. Therefore, this paper presents the detection of the outliers in electrical motors and failures in transformers using supervised machine learning algorithms. Machine learning techniques such as Support Vector Machine (SVM), Random Forest (RF) and regression techniques like Support Vector Regression (SVR), Polynomial Regression (PR) are used to analyze the use cases of different motor specifications. Evaluation and the efficiency of findings are proved by considering accuracy, precision, F-measure, and recall for motors. Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE) and R-squared Error (R2) are considered as metrics for transformers. The proposed approach helps to identify the anomalies like vibration loss, copper loss and overheating in the industrial motor and to determine the abnormal functioning of the transformer that in turn leads to ascertain the lifetime. The proposed system analyses the behaviour of the electrical machines using the energy meter data and reports the outliers to users. It also analyses the abnormalities occurring in the transformer using the parameters involved in the degradation of the paper-oil insulation system and the voltage of operation as a whole leads to the predict the lifetime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.