Abstract

One significant ocular symptom of neuro-ophthalmic disorders of the optic disk (OD) is optic disk edema (ODE). The etiologies of ODE are broad, with various symptoms and effects. Early detection of ODE can prevent potential vision loss and fatal vision problems. The texture of edematous OD significantly differs from the non-edematous OD in retinal images. As a result, techniques that usually work for non-edematous cases may not work well for edematous cases. We propose a fully automatic OD classification of edematous and non-edematous OD on fundus image collections containing a mixture of edematous and non-edematous ODs. The proposed algorithm involved localization, segmentation, and classification of edematous and non-edematous OD. The factorized gradient vector flow (FGVF) was used to segment the ODs. The OD type was classified using a linear support vector machine (SVM) based on 27 features extracted from the vessels, GLCM, color, and intensity line profile. The proposed method was tested on 295 images with 146 edematous cases and 149 non-edematous cases from three datasets. The segmentation achieves an average precision of 88.41%, recall of 89.35%, and F1-Score of 86.53%. The average classification accuracy is 99.40% and outperforms the state-of-the-art method by 3.43%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.