Abstract
Metabolic dysregulation of catecholamines (CAs) is implicated in various human diseases. Simultaneously analyzing these acidic and alkaline CAs and their metabolites poses a significant challenge for clinical detection. This study introduces an efficient method employing automated online solid-phase extraction coupled with tandem mass spectrometry (aoSPE-MS/MS). The method employs weak cation exchange (WCX) and mixed-mode anion exchange (MAX) adsorbents to fabricate an on-line solid-phase extraction (SPE) column, along with an automated injection and multi-valve switching capabilities. The setup allows for automated extraction and analysis of urine samples in 15 minutes while retaining a wide range of acidic and basic CAs and their metabolites. The applicability of this method was demonstrated by optimising the adsorbent dosage volume, extraction solvent, and extraction rate. The limits of detection (LODs) and limits of quantitation (LOQs) for the 8 CAs and their metabolites were determined using the aoSPE-MS/MS approach, with ranges of 0.0625 ∼ 62.5 ng/mL and 0.125 ∼ 125 ng/mL, respectively. Additionally, assessments were made on the linearity, accuracy, and precision within and between batches, as well as matrix and ionic effects, and spiked recoveries. The study discovered that the aoSPE-MS/MS technique simplifies operation, increases efficiency, saves time, and has low detection and quantification limits when detecting a wide range of acid and alkaline CAs and their metabolites in urine. The study successfully demonstrated the high-throughput and automated detection of the 8 CAs and their metabolites with varying acidity and alkalinity in human urine samples. This method is expected to be a potential powerful tool for clinical detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.