Abstract
Segmentation of cell nuclei is an important step towards automatic analysis of microscopic images. This paper presents an automated technique for nuclear segmentation in skin histopathological images. The proposed technique first detects nuclear seeds using a bank of generalized Laplacian of Gaussian (gLoG) kernels. Based on the detected nuclear seeds, a multi-scale radial line scanning (mRLS) method combined with dynamic programming (DP) is utilized to delineate a set of candidate nuclear boundaries. The gradient, intensity and shape information are then integrated to determine the optimal boundary for each nucleus in the image. Experimental results on 28 H&E stained skin histopathological images show that the proposed technique is superior to conventional schemes in nuclear segmentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.