Abstract

Neural interfaces with increasing channel counts require a scalable means of testing. While multiplexed potentiostats have long been the solution to this problem, most have been dedicated to one specific probe design or potentiostat, limited in the electrochemical techniques available, inordinately expensive, or they support multiplexing of too few channels. We present the design of an automated multiplexed potentiostat system that addresses these limitations-it is easily generalizable to any probe and potentiostat, supports any electrochemical technique available with the potentiostat, is low-cost, and can readily be expanded to hundreds of channels with support for multiple simultaneous potentiostats. This paper discusses the design philosophy and architecture of our 512-channel, 4-potentiostat system before demonstrating functionality with electrochemical impedance spectroscopy data, cyclic voltammetry curves, and an example of electrochemical surface modification, all on functional implantable microelectrode arrays currently being used for in vivo electrophysiological studies. Finally, we discuss the limitations to some sensitive or high-frequency impedance measurements due to reactive parasitics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call