Abstract

BackgroundAnalyses of molecular high-throughput data often lack in robustness, i.e. results are very sensitive to the addition or removal of a single observation. Therefore, the identification of extreme observations is an important step of quality control before doing further data analysis. Standard outlier detection methods for univariate data are however not applicable, since the considered data are high-dimensional, i.e. multiple hundreds or thousands of features are observed in small samples. Usually, outliers in high-dimensional data are solely detected by visual inspection of a graphical representation of the data by the analyst. Typical graphical representation for high-dimensional data are hierarchical cluster tree or principal component plots. Pure visual approaches depend, however, on the individual judgement of the analyst and are hard to automate. Existing methods for automated outlier detection are only dedicated to data of a single experimental groups.ResultsIn this work we propose to use bagplots, the 2-dimensional extension of the boxplot, to automatically identify outliers in the subspace of the first two principal components of the data. Furthermore, we present for the first time the gemplot, the 3-dimensional extension of boxplot and bagplot, which can be used in the subspace of the first three principal components. Bagplot and gemplot surround the regular observations with convex hulls and observations outside these hulls are regarded as outliers. The convex hulls are determined separately for the observations of each experimental group while the observations of all groups can be displayed in the same subspace of principal components. We demonstrate the usefulness of this approach on multiple sets of artificial data as well as one set of gene expression data from a next-generation sequencing experiment, and compare the new method to other common approaches. Furthermore, we provide an implementation of the gemplot in the package ‘gemPlot’ for the R programming environment.ConclusionsBagplots and gemplots in subspaces of principal components are useful for automated and objective outlier identification in high-dimensional data from molecular high-throughput experiments. A clear advantage over other methods is that multiple experimental groups can be displayed in the same figure although outlier detection is performed for each individual group.

Highlights

  • Analyses of molecular high-throughput data often lack in robustness, i.e. results are very sensitive to the addition or removal of a single observation

  • Data examples We demonstrate the practicability of bagplots and gemplots for outlier detection in high-dimensional data on two sets of artificially generated principal components, different data sets of artificial gene expression data, as well as on a data set originating from an RNA-seq experiment in a tumor study

  • Results we show the results of outlier detection in the example data sets and the simulation study

Read more

Summary

Introduction

Analyses of molecular high-throughput data often lack in robustness, i.e. results are very sensitive to the addition or removal of a single observation. Outliers in high-dimensional data are solely detected by visual inspection of a graphical representation of the data by the analyst. Existing methods for automated outlier detection are only dedicated to data of a single experimental groups. Some typical examples are (metric) gene and protein expression data observed with DNA microarrays [1, 2], next-generation sequencing (NGS) [3] or proteomics techniques such as mass spectrometry [4, 5] or 2-D gel electrophoresis [6]. For example gene expression data is usually analyzed to detect differentially expressed genes between two levels of an experimental factor (e.g. treatment versus control) or between two patient groups [15,16,17]. High-dimensional expression data is often used to train classifier and regression models to predict therapy outcome [18] or survival [19, 20]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call